122t=-16t^2+122t+10

Simple and best practice solution for 122t=-16t^2+122t+10 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 122t=-16t^2+122t+10 equation:



122t=-16t^2+122t+10
We move all terms to the left:
122t-(-16t^2+122t+10)=0
We get rid of parentheses
16t^2-122t+122t-10=0
We add all the numbers together, and all the variables
16t^2-10=0
a = 16; b = 0; c = -10;
Δ = b2-4ac
Δ = 02-4·16·(-10)
Δ = 640
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{640}=\sqrt{64*10}=\sqrt{64}*\sqrt{10}=8\sqrt{10}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{10}}{2*16}=\frac{0-8\sqrt{10}}{32} =-\frac{8\sqrt{10}}{32} =-\frac{\sqrt{10}}{4} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{10}}{2*16}=\frac{0+8\sqrt{10}}{32} =\frac{8\sqrt{10}}{32} =\frac{\sqrt{10}}{4} $

See similar equations:

| (x+4)-11x=14 | | u=5u-88 | | 6/20=x/120 | | .56a=6+.4a | | 2p+17=3p+9 | | -30=18+d | | t=2t-31 | | b/6+0.9=-22.5 | | 3p-23+2p-12=180 | | -a/10-3.6=-22 | | 2r+50-260=5r-290 | | –4.5x=31.5 | | y+3=−4(1+7) | | 5x+3+-7=3 | | 15x+1−7x+9=4x | | 6z-58=98 | | (12)w/4+(12)5=(12)w/3+(12)10 | | 6b=b-15 | | 6z-106=62 | | p^2-16p+13=−3p^2 | | 4z-40=96 | | 9x²-7=0 | | p^2−16p+13=−3p^2 | | 18(10x)+2=10. | | Y=1.84+0.9x | | p2−16p+13=  −3p2 | | 8x-19+5x+43=180 | | -3n+20.7=13.4 | | 2r+25=70 | | 5c2+12c+6=  0 | | (3y+9)=180 | | (3y+9)°=180 |

Equations solver categories